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Many remote sensing image classifiers are limited in their ability to combine spectral features with spa-
tial features. Multi-kernel classifiers, however, are capable of integrating spectral features with spatial or
structural features using multiple kernels and summing them for final outputs. Using a support vector
machine (SVM) as classifier, different multi-kernel classifiers are constructed and tested using 64-band
Operational Modular Imaging Spectrometer II hyperspectral image of Changping Area, Beijing City. Re-
sults show that by integrating spectral and wavelet texture information, multi-kernel SVM classifiers can
obtain more accurate classification results than sole-kernel SVM classifiers and cross-information SVM
kernel classifiers. Moreover, when the multi-kernel SVM classifier is used, the combination of the first four
principal components from principal component analysis and wavelet texture provides the highest accuracy
(97.06%). Multi-kernel SVM is therefore an effective approach to improve the accuracy of hyperspectral
image classification and to expand possibilities for remote sensing image interpretation and application.
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Hyperspectral remote sensing image classification re-
mains a contentious topic in remote sensing[1−3]. With
the increasing amounts of data from airborne and satel-
lite hyperspectral sensors, numerous bands and low
training samples pose a “curse of dimensionality”[1−3].
To address this issue and to increase the stability of
classifiers, some feature selection algorithms have been
proposed. However, the proposed approaches, time-
consuming and scenario-dependent, usually lead to infor-
mation loss[4]. In recent years, support vector machines
(SVMs) have been widely used to classify hyperspectral
images, demonstrating excellent performance in terms of
accuracy, generalization, and robustness[5].

According to related studies, SVMs have better perfor-
mance compared with traditional classifiers[1,6,7]. This
is observed when spectral information is used for a SVM
classifier. Moreover, SVMs can account for both spec-
tral information and spatial features; for example, a
good framework of multi-kernels for hyperspectral im-
age classification has been presented[5,8,9]. However, the
researchers did not pay more attention to the parameter
selection technique and more sophisticated texture tech-
niques — two very important methods for improving the
performance of multi-kernel approaches.

Many recent studies attempted to enhance texture
analysis through different methods, such as texture clas-
sification[10], texture segmentation[11,12], and texture
detection[11,13]. Various texture analysis techniques have
also been developed. Traditional statistical approaches
to texture analysis, such as co-occurrence matrices, sec-
ond order statistics, and Gauss-Markov random fields[14],
are restricted to the analysis of spatial interactions over
relatively small neighborhoods on a single scale.

The wavelet theory has developed rapidly since the

1980s, and has been used in fields such as sig-
nal processing[11,15−17], image restoration[18], image
retrieval[19], and pattern recognition[20], among others.
Uses of wavelet theory on the texture analysis of remote
sensing images have also been investigated[21].

In this letter, SVMs, which have demonstrated supe-
rior performance in the context of hyperspectral image
classification, are adopted as the classifier. A series of
multi-kernel classifiers based on SVM are constructed to
account for both spectral and spatial features (described
by wavelet texture information).

The SVM theory for a two-class problem is found in
some references[22,23]. Some popular kernel functions in-
clude linear kernel, polynomial kernel, Gaussian radial
basis function (RBF) kernel, and sigmoid kernel.

Considering some common SVM kernels, the bottle-
neck is defined as the kernel mapping function that at-
tains similar samples. In general, we can reconstruct a
new kernel if it fulfils Mercer’s condition.

Let χ be any input space and K : χ×χ→ R be a sym-
metric function. In the expression, K is a Mercer’s kernel
if, and only if, the kernel matrix formed by restricting K
to any finite subset of χ is positive semi-definite, having
no negative eigen values.

We can then consider the convex combination of mul-
tiple kernels:

K(xi, xj) =

K
∑

k=1

βkKk(xi, xj), (1)

where 1 > βk ≥ 0 and
∑

k βk = 1, and each kernel sat-
isfies the condition of Mercer’s kernel.

For definite pixel entity xi, if xi is recorded with xs
i in

the spectral domain and xt
i is in the spatial domain after
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texture extraction, we can rewrite the foregoing multi-
kernel function as

K(xi, xj) =

n
∑

k=1

βkKk(xs
i , x

s
j) +

m
∑

k=1

βkKk(xt
i , x

t
j). (2)

The multi-kernel equation constitutes a tradeoff between
the spectral and spatial domains, which is actually im-
plemented by designing the parameter of βk. The pre-
ceding kernel classifiers can be conveniently modified to
account for the relationship between spatial and spectral
information[22].

Similar to the convex kernel, another kernel can be
defined as[5]

K(xi, xj) = Ks(x
s
i , x

s
j) +Kt(x

t
i, x

t
j) +Kst(x

s
i , x

t
j)

+ Kts(x
t
i, x

s
j), (3)

where xs
i and xs

j must have the same dimension. It is
named cross-information kernel. We use a polynomial
kernel for Kst(x

s
i , x

t
j) and Kts(x

t
i , x

s
j) to decrease com-

putational burden and simplify parameter selection. A
detailed proof of this can be found in Ref. [5].

Wavelet analysis is based on the Fourier transform.
Frequency analysis of stationary signals can be effectively
achieved by projecting the signal onto a set of infinite
spatial extent basis functions using the Fourier trans-
form:

X(f) =

∫ +∞

−∞

x(t)e−2jπftdt, (4)

where X(f) represents the global frequency of the signal.
Similarly, effective frequency analysis of non-stationary
signals can be achieved by projecting the signal onto a
set of spatially localized basis functions using the wavelet
transform. This is achieved by combining the inner prod-
ucts of signal X(t) with the translation and dilation of a
prototype function:

Ψ(a, b) =

∫ +∞

−∞

x(t)ψ∗

ab(t)dt, (5)

where a, b ∈ R, a is the dilatation factor and b is the
translation factor. Here, ψa,b(t) is the translated and
scaled version of the mother wavelet ψ(t) given by

ψa,b(t) =
1√
a
ψ

( t− b

a

)

. (6)

Various choices of a and b result in different possible
wavelet bases at different scales and translations. No-
tably, large values of the scale variable correspond to
small frequencies and small lengths of the ψa,b(t) func-
tion. Conversely, small values correspond to low fre-
quencies and large lengths of the ψa,b(t) function. This
effectively shows that low frequencies need to be an-
alyzed at large scales, and high frequencies at small
scales. Haar, Daubechies, and Gabor are just a few of
the wavelet functions.

From Mallat’s theory, image data can be broken down
into orthogonal components and translation invariant
using the discrete wavelet transform (DWT) method[5].

Fig. 1. DWT example for image data.

A DWT example for image data is shown in Fig. 1. To
extend the wavelet transform to two dimensions, it is only
necessary to filter separately horizontally and vertically.
This produces four sub-bands at each scale. Denoting the
horizontal frequency first and the vertical frequency sec-
ond, this produces high-high (HH), high-low (HL), low-
high (LH), and low-low (LL) image sub-bands.

A typical way of characterizing a texture using DWT
is to extract energy measures from each sub-band[24]. If
the sub-band is x(m,n), then energy features from each
sub-band can be calculated using the l1norm:

e =
1

MN

M
∑

i=1

N
∑

j=1

∣

∣x(i, j)
∣

∣, (7)

where M and N are the length and width of the sub-
band, respectively; i and j are the rows and columns of
the channel, respectively; and x is the wavelet coefficient.
Each energy measure characterizes the magnitude of fre-
quency content at the orientation and scale of each sub-
band. Thereafter, each sub-band should be resampled to
the original length and width of the image data.

By comparing the Haar wavelet and the Daubechies’
wavelet, we see that the latter has continuous derivatives
responding well to discontinuities in the texture, while
the former does not allow sharp transitions and fast at-
tenuation. Moreover, the Haar wavelet cannot efficiently
separate the image signals into low- and high-frequency
sub-bands. In contrast, Daubechies’ wavelet constructs
smooth scaling functions of compact support with or-
thonormal shifts. The DWT method can then be used
to obtain smooth orthogonal wavelets. Many examples
of textured image analysis, comparison, and segmenta-
tion have shown that Daubechies’ wavelet is a successful
technique[25,26]. Daubechies’ wavelet transform (WT)
based texture analysis produces the best result in invari-
ant texture classification[27,28].

For texture extraction, principal component analysis
(PCA) was first conducted. The first four principal com-
ponents (PCs) were chosen for wavelet texture extrac-
tion because they contain most of the information (about
90%) from the original data. Window size of the wavelet
texture was also significant. We tested 3×3, 8×8, and
16×16 window sizes, finally adopting the 8×8 window
size. Figure 2 shows the original remote sensing image
and the two-dimensional (2D) wavelet texture images,
which have seven different texture images as the seven
vectors. To obtain the wavelet texture, one-dimensional
(1D) DWT and 2D DWT were applied. As the extension
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of 1D DWT, 2D DWT can be carried out by the tensor
product of two 1D wavelet base functions in the horizon-
tal and vertical directions. This produces HH, HL, LH,
and LL image sub-bands. Using the above wavelet the-
ory, we obtained four different dimensions data for both
1D DWT and 2D DWT. These four dimensions were
named wavelet texture 1 (WT1) and wavelet texture 2
(WT2).

The data used in the experiment were the Operational
Modular Imaging Spectrometer II (OMIS II) hyperspec-
tral image of Changping Area, Beijing City, China. The
image has 512 rows, 512 columns, and 64 bands ranging
from 0.46 to 1.1 µm. It has a spatial resolution of 3 m.
Preprocessing was conducted by the data provider. Fig-
ure 2(a) is the RBG composite image of the hyperspec-
tral image (R: Band 36 with a wavelength of 0.81 µm;
G: Band 23 with a wavelength of 0.68 µm; and B: Band
11 with a wavelength of 0.56 µm). In Fig. 2(a), the
black region represents the fish pond area, the yellow
(light gray in Print Edition) region represents the yellow
grass area, and the white region represents the inhabited
area. 16 bands of noise data were removed.

We chose spectral data, PCA data, and wavelet texture
for multi-kernel SVM classification. After we applied
PCA, the first four PCs were chosen[3]. In the follow-
ing experiments, sole-kernel, multi-kernel, and cross-
information kernel were constructed. Figure 3 shows the
flow chart of the algorithm. For simplicity, 0.5 was as-
signed as βk in both features. As the penalization and
RBF parameters were difficult to choose, we used an
improved method in all cases. First, we set the penaliza-
tion range C = {10−1, 1, 10, · · · , 103}, then we searched
each RBF parameter δ in the range δ = [10−1, · · · , 102].
Although time-consuming, the method worked well. We
used one-against-one multi-classification for SVM.

After normalizing all the data, training and test sam-
ples were selected. Taking into account all spectral and
texture features, the pixel purity index (PPI) of the
data was computed. One thousand purity pixels were

Fig. 2. (a) Original remote sensing image and (b)–(h) 2D
wavelet texture images.

Fig. 3. Flow chart of the experiment.

obtained and chosen as samples. In the experiments,
these purity pixels, together with our ground truth, were
taken as training and test samples.

The classification problem involved the identification
of six land cover types for the OMIS II data set: C1:
inhabited area (89 training pixels), C2: crop land (92
training pixels), C3: plant (88 training pixels), C4: road
(84 training pixels), C5: vegetable (74 training pixels),
and C6: water (101 training pixels). The training set
was 0.201% of the original dataset. In addition, the test
samples, which were obtained in the same manner, were
about 0.168% of the dataset: C1: inhabited area (71 pix-
els), C2: crop land (69 pixels), C3: plant (76 pixels), C4:
road (72 pixels), C5: vegetable (73 pixels), and C6: wa-
ter (79 pixels).

For the sole-kernel SVM classifier, only spectral fea-
tures were used. In all experiments, we used the RBF
kernel for both spectral and texture features because of
its superiority over other kernel functions[28]. Finally,
different features were added in one dataset: spectral di-
mensions, the first four PCs of PCA, WT1, and WT2.
Table 1 shows the classification accuracy and Kappa
coefficients[3,8].

With multi-kernel classification, we have different com-
binations, such as spectral data and wavelet data, four
PCs, wavelet data, etc. However, we used the RBF kernel
in each dataset. Table 2 shows the classification accuracy
and Kappa coefficients.

Finally, the cross-information kernel was applied. How-
ever, different data should have the same dimensions;
hence, the four PCs and wavelet textures were adopted.
Table 3 shows the classification accuracy and Kappa
coefficients. Figure 4 shows that the classification re-
sults of different SVM kernels in each experiment are the
most accurate.

Table 1. Classification Accuracy of the
Sole-Kernel SVM

Dataset Accuracy (%) Kappa C, δ

Spectral Data 93.63 0.9236 100, 1

Four PCs 93.64 0.9236 100, 1.07

WT1 79.77 0.7574 120, 0.84

WT2 75.68 0.7081 100, 0.15

Spectral Data + WT1 96.36 0.9563 100, 0.125

Spectral Data +WT2 95.45 0.9454 100, 0.18

Four PCs + WT1 94.77 0.9372 80, 0.019

Four PCs + WT2 92.04 0.9045 100, 0.91

WT1 + WT2 80.68 0.7683 100, 0.125

All Datasets 93.19 0.9181 100, 1.1

Table 2. Classification Accuracy of the
Multi-Kernel SVM

Dataset Accuracy (%) Kappa C, δ1, δ2

Spectral Data + WT1 94.55 0.9345 50, 0.1, 0.9

Spectral Data +WT2 93.18 0.9181 80, 0.25, 0.9

Four PCs + WT1 97.05 0.9427 100, 0.85, 0.8

Four PCs + WT2 93.64 0.9236 150, 1.8, 0.8

WT1 + WT2 86.14 0.7738 100, 0.12, 0.8
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Fig. 4. Classification image. (a) Classification image of
sole-kernel SVM using spectral data and WT1, (b) clas-
sification image of multi-kernel SVM using the first four prin-
cipal components and WT1, (c) classification image of cross-
information kernel SVM using the first four PCs and WT1.

Table 3. Classification Accuracy of the
Cross-Information Kernel SVM

Dataset Accuracy (%) Kappa C, δ1, δ2

Four PCs + WT1 94.77 0.9372 80, 0.6, 1.0

Four PCs + WT2 91.82 0.9018 170, 0.5, 1.0

WT1 + WT2 80.23 0.7628 160, 0.5, 0.95

From Tables 1–3, all multi-kernel SVMs obtained bet-
ter accuracy than sole-kernel SVM and cross-information
kernel. The best result was produced by the summation
kernels, which used the first four PCs of PCA and WT1
for classification, yielding a total accuracy of 97.06% and
a Kappa coefficient of 0.9472. We also compared the
computing time for different kernel functions and ran
each algorithm 10 times. The average time was chosen
as the final training time of each algorithm. The training
time of the proposed algorithm was 196.9 s. When cross-
information kernel was used, the combination of the four
PCs and WT1 also obtained the best results in its group,
but the training time was 440.3 s. For sole-kernel SVM,
the best classification accuracy was 96.36% when spec-
tral data and WT1 data were applied, and the training
time was 164.5 s. In short, good classification results will
be ensured if the appropriate multi-kernels are selected.
Specifically, summation kernels can reach the best accu-
racy and consume shorter training times.

In conclusion, SVM classifiers using different kernels
are applied to hyperspectral data to test their applicabil-
ity. Extracted features are shown to improve SVM clas-
sification, thus presenting an alternative to what Hughes
terms “the curse of dimensionality”. In these cases,
multi-kernel approaches show results superior to those
achieved by sole-kernel approaches. With good results,
more sophisticated cross-kernel approaches are applied
in our experiments. Note that the parameters are se-
lected using an algorithm. Results from these experi-
ments show that wavelet texture classification is a rec-
ommended application for use with hyperspectral data.
Future work should consider multi-temporal data and the
kernel-based theory.
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